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Quantitative Analysis of Learning Object
Repositories

Xavier Ochoa and Erik Duval, Member, IEEE

F

Abstract—This paper conducts the first detailed quantitative study
of the process of publication of learning objects in repositories. This
process has been often discussed theoretically, but never empirically
evaluated. Several question related to basic characteristics of the pub-
lication process are raised at the beginning of the paper and answered
through quantitative analysis. To provide a wide view of the publication
process, this paper analyzes four types of repositories: Learning Object
Repositories, Learning Object Referatories, Open Courseware Initia-
tives, Learning Management Systems. For comparison, Institutional
Repositories are also analyzed. Three repository characteristics are
measured: size, growth and contributor base. The main findings are
that the amount of learning objects is distributed among repositories
according to a power law, the repositories mostly growth linearly and
the amount of learning objects published by each contributor follows
heavy-tailed distributions. The paper finally discusses the implications
that this findings could have in the design and operation of Learning
Object Repositories.

Index Terms—Learning Objects, publication, Repositories, LOR, OCW,
LMS

1 INTRODUCTION

L EARNING Object publication can be defined as the
act of making a learning object available to a certain

community. Strijker and Collis call this process “Offer-
ing” in their Learning Object Life cycle model [1]. The
publication process can take several forms. A professor
can publish lectures notes for students in a Learning
Management System (LMS). The same professor can
decide to share objects with a broader community and
publish them in a Learning Object Repository (LOR),
such as ARIADNE [2] or Connexions [3]. The University
where this professor works can decide to start an Open
Courseware (OCW) initiative [4] and put the learning
material of its courses freely available on the Web. More-
over, material already available online, can be discovered
and re-published for other communities. For example, a
student that found an interesting Web site to learn about
basic Physics, could publish a link to that Web site on
a Learning Object Referatory (LORF), such as Merlot [5]
or SMETE [6]. In all its different forms, Learning Object
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publication is the most important enabler of the Learning
Object Economy [7], because making the objects avail-
able is the first step to fuel the “share, reuse, improve
and share again” philosophy behind this economy.

The publication of learning objects has been an im-
portant research issue since the definition of the field
15 years ago. These efforts can be summarized into
three different research lines: Publishing Infrastructure
[8] [2], Interoperability [9] and Copyright and DRM [10]
[11] . However, one area of research that is practically
unexplored is the study of the actual process and results
of learning object publication. The research on technical
and legal aspects lays the ground on which publication
can take place. However, it does not provide any in-
formation about simple questions, such as how many
learning objects are actually published, how they are dis-
tributed among different repositories or how repositories
grow. Moreover, answers to these questions are not only
relevant to measure the progress of the Learning Object
Economy, but also to provide information on which
decisions about architecture, interoperability strategies
and planning for growth should be based.

The most prominent attempts to characterize learning
object repositories and measure their characteristics are
made by McGreal in [12]. He provides a comprehensive
survey of existing LORs and classifies them in various
typologies. Unfortunately, his analysis is mostly qualita-
tive and cannot be used to answer the questions men-
tioned above. Other relevant studies are [13], [14], [15],
[16] and [17]. In these studies different LORs are also
qualitatively compared, mainly by general characteristics
as metadata standard used, language, end users, quality
control, etc. In contrast with these studies, this paper
will quantitatively analyze and compare different types
of publication venues for learning objects. These types
include Learning Object Repositories (LORP), Learning
Object Referatories (LORF), Open Courseware Initiatives
(OCW), Learning Management Systems (LMS). To pro-
vide some type of comparison and because their content
can also be used for educational purposes, Institutional
Repositories (IR) are also included in the studies. For
simplicity, during this paper, we will refer to all these
systems as “repositories”. The main goal of this paper is
to provide empirical answers to the following questions:
• What is the typical size of a repository? Is it related
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to its type?
• How do repositories grow over time?
• What is the typical number of contributors a repos-

itory has? Is it related to its type?
• How does the number of contributors grow over

time?
• How many learning objects does a contributor pub-

lish on average?
To answer these questions data from different reposi-

tories is collected and analyzed. These answers will help
us to gain insight into the actual process of learning
object publication. Understanding how supply works in
the Learning Object Economy will help the administrator
of the repositories to design and plan the technological
infrastructure needed to receive, store and share the
published material. Policy-Makers can also use these
answers to evaluate which are the best approaches to
encourage Contributors to publish their materials.

This paper is structured as follows: Section 2 presents
an analysis of the size distribution of different reposi-
tories. Section 3 analyzes the growth rate in objects, as
well as contributors. Section 4 studies the distribution
of contribution, publishing rate and engagement time.
Section 5 discusses the implication of the findings and
answers the research questions. The paper finalizes with
Conclusions and Further Work.

2 SIZE ANALYSIS

In this section, we will analyze the size of different
repositories. We define size as the number of objects
present in the repository. We compare the number of
objects between repositories of the same type. We start
with the study of 24 LORPs and 15 LORFs. These LORs
were selected from the list compiled in [12]. This list
is biased towards repositories that content materials in
English. To avoid an unfair size comparison between
repositories, only LORs that are not the result of the
federation of other repositories, are publicly available
and contain or link to learning objects of small and
intermediate granularity (raw material or lessons) were
analyzed. While McGreal already reported an estimate
of the size, we measured each LOR through direct ob-
servation, on November 3rd - 4th 2007.

The 24 LORPs have in total circa 100,000 learning ob-
jects, with an average size of circa 4,000 objects. A simple
histogram of the data shows that the size distribution is
not Normal, but highly skewed to the left. To analyze the
distribution, we fit five known probabilistic distributions
to the data: Lotka, Exponential, Log-Normal, Weibull
and Yule. These distributions were selected because
they have high skewness to the left and are commonly
present in other Information Production Processes [18].
The Maximum Likelihood Estimation (MLE) method
[19] was used to obtain the distribution parameters.
To find the best-fitting distribution, the Vuong test [20]
is applied on the competing distributions. When the
Vuong test is not statistically significant between two

distributions, the distribution with less parameters is
selected. This methodology is recommended by [21] to
select among heavy tail models instead of the more
common Least-Squares Estimation and R2 values used
for Generalized Linear Models. In the specific case of
LORP, the best fitting distribution is Exponential (λ =
2.5x10−3). Figure 1 (left) presents the empirical (points)
and fitted (line) Complementary Cumulative Distribu-
tion functions (CCDF) presented in logarithmic scales.
In this graph, the X axis represent the number of objects
present in the repository. The Y axis represent the inverse
accumulated probability of the size (P (X ≥ x)), that is,
the probability that a repository has x or more objects.
This skewed distribution of content size concentrates the
majority of learning objects in few big repositories, while
the rest of repositories contribute only a small percent-
age. Figure 1 (right) shows the Leimkuhler curve [22]
[23]. This curve is a representation of the concentration of
objects in the different repositories. The Y axis represent
the cumulative proportion of objects published in the
top x proportion of repositories. For example it is easy
to see that the top 20% of the repositories (the biggest
5) contribute almost 70% of the total number of learning
objects. The smaller 40% of the repositories combined
contribute less than 3% of the objects.

Fig. 1. Distribution and Leimkuhler curve of the Size of
Learning Object Repositories
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The 15 studied LORFs offer in total circa 300,000
learning objects, with an average of circa 20,000 objects
per referatory. The best fitting distribution is Exponential
(λ = 5.2x10−5). The biggest 20% (3 referatories) concen-
trate 66% of the 300,000 objects. The lower half contribute
only 10% of the total.

To study the size of OCW initiatives, we collect a list
of 34 institutions providing their materials online from
the Web site of the OCW Consortium1. The size was
determined by the number of full courses offered online
by each Institution. In total, 6,556 courses are available
among all the studied sites, with an average of 193
courses per site. However, the average is a misleading
value, because the size distribution is extremely skewed.
The best-fitted distribution for OCW sites with more
than 7 objects (tail) was Lotka with an α = 1.61. The esti-
mation of the start of the tail was performed minimizing
the Kolmogorov-Smirnov statistic [24] for the Lotka law.
This distribution leads to a very unequal concentration
of courses. The top 20% (7 sites) of the OCW sites offer
almost the 90% of the courses, the remaining 27 sites just
account for 10%.

Data about the size of LMSs is not usually available
online. Most LMS implementations only allow registered
users to have access to their contents. In order to obtain
an estimation of the size of an LMS, we use some
characteristics of Moodle [25], a popular Open Source
LMS. Moodle allows guests to see the list of courses and
most and a link to registered installations is available on
the Moodle site. We obtained a random sample of 2,500
from the circa 6,000 LMS sites listed on the Moodle site
as installations in the United States. This country was
selected because it had the largest number of installa-
tions. Through Web scraping, we downloaded the list
of courses for each one of those installations. In those
2,500 Moodle sites, 167,555 courses are offered, with an
average of 67 courses per site. The distribution that best
fits the tail of the data (sites bigger than 70 courses) is
Lotka with an estimated α of 1.95. The estimation of the
start of the tail was determined through minimization
of the Kolmogorov-Smirnoff. Again, this distribution
concentrates most of the courses in just a few LMSs. For
example, the top 20% LMSs (500 sites) offer more than
85% of the courses.

Finally, to establish the size distribution of IRs, we
collect the list of repositories listed at the Registry of
Open Access Repositories (ROAR)2. An automated ser-
vice connected to this registry regularly harvests OAI-
PMH enabled [26] IRs and provides information about
their sizes. During data collection, 772 repositories with
more than one object were measured. The total number
of documents stored in those repositories was 7,581,175.
There were, in average, 9,820 documents per repository.
The tail (repositories with more than 3,304 documents) of
the distribution was fitted by Lotka with an estimated α

1. Open Courseware Consortium. http://www.ocwconsortium.org/
2. Registry of Open Access Repositories. http://roar.eprints.org/

of 1.73. The highly skewed concentration of documents
produce that 20% (155) of the repositories concentrate
circa 90% of the documents.

Table 1 presents the summary of the findings about
the size of the different types of repositories. From the
Average Size column, the first conclusion that can be
extracted is that the size of a repository is directly
related to its type. The MannWhitney U test was ap-
plied to corroborate the significance of these differences.
The most interesting difference can be found between
Learning Object Repositories and Referatories. LORFs
are almost an order of magnitude bigger than LORPs.
This difference can be explained by the level of own-
ership required to contribute to these repositories. To
contribute to a Referatory, the user only needs to know
the address of the learning resource on the web. Any
user can publish any on-line learning object because
its publication does not require permission from the
owner of the material. On the other hand, publishing
material in a Repository requires, if not being the author
of the object, at least to have a copy of it. It can be
considered non-ethical, or even illegal, to publish a copy
of the object without having its ownership or at least the
explicit consent of its owner. It will be safe to assume
that, in the general case, the number of online learning
objects that interest a user is larger than the amount of
learning objects being authored by herself. Another type
of repositories, comparable by its granularity to LORs,
are the IRs. The average size, around 10,000, seems to be
a mid-way between the LORF and the LORPs. However,
because its power-law distribution, IRs could normally
be at least 2 orders of magnitude bigger and 4 order of
magnitude smaller than the average. In conclusion, IRs
present a larger “range”, with some IRs ten times bigger
than the biggest LORF and others ten times smaller
than the smallest LORP. In the large granularity group,
OCWs and LMS, the difference is less significant. This
similitude can be explained because OCWs are not more
than the content of LMS published and made available.
The largest and smallest OCWs and LMSs have also
similar amount of courses.

If we consider the distribution of the sizes among
different types of repositories (Table 1, forth and fifth
columns) it is clear that the size of OCWs, LMSs and IRs
is distributed according to a power law with an expo-
nent between 1.5 and 2. This distribution, as mentioned
above, produces a wide range of sizes. The variance of
the Lotka distribution for those values of alpha is infinite,
meaning that it is possible, at least theoretically, that
extremely large repositories exists. Also, this distribution
presents a heavy-tail with few big repositories and a lot
of smaller ones. It is surprising that independently of
the type of repository, the alpha parameters are similar.
On the other hand, LORPs and LORFs present an expo-
nential distribution. However, we argue that, in reality,
they also follow a Lotka distribution, but the finding of
the exponential is an artifact of the sampling method. In
the case of OCWs, LMSs, and IRs, the considered repos-
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itories were sampled from lists that are not biased to
consider only small or large repositories. Any repository,
regardless of size, can publish itself in the sampled lists.
In the case of LORPs and LORFs, there are no compi-
lation lists available, and the considered repositories are
only those that are known, biasing the sample against the
expected large amount of small and relatively unknown
repositories. An example of this sampling artifact can
be seen in [27]. There, only the top IRs from ROAR are
considered and the size distribution that can be inferred
from the presented graphs is distinctively exponential. If
all the IRs of ROAR are considered, we found that the
real distribution is actually a power law.

The final conclusion that can be extracted from the size
analysis is that the distribution of learning objects is very
unequal. Most of the resources, independently of the
type of repository, are stored in just a few repositories.
The concentration is a consequence of the power law dis-
tribution. The Pareto or 20/80 rule (also used to describe
other heavy-tailed distributions, such as wealth [28])
seems to be a good guide to look at this inequality. The
lower value observed in the LORPs and LORFs can also
be attributed to the bias toward bigger repositories in the
sampling. A more detailed search for LORPs and LORFs
will most certainly find small repositories. Adding these
small repositories will increase the concentration at the
top 20%. Despite this inequality distribution, however,
no single repository of any type contains more than 40%
of the available resources. The remaining long-tail [29]
with the 60% of resources is located in other repositories.
This can be seen as a strong empirical corroboration
of the need to interconnect repositories, either through
query federation [30] or metadata harvesting [26].

3 GROWTH ANALYSIS

In order to understand how repositories grow over time,
this section analyzes several repositories of different
types. The repository growth will be considered in two
dimensions: growth in number of objects and growth in
the number of contributors. The following subsections
will present the analysis for each one of these dimen-
sions.

3.1 Content Growth

To measure the growth in the number of objects, 15
repositories of different type were studied. They were
selected based on how representative they are for their
respective type in terms of size and period of existence.
The availability of the object publication date was also a
determinant factor. The selected repositories are:

• LORPs: ARIADNE3, Maricopa Learning Exchange4

and Connexions.

3. ARIADNE Foundation. http://www.ariadne-eu.org
4. Maricopa Learn Exchange. http://www.mcli.dist.maricopa.edu/mlx

• LORFs: INTUTE5, MERLOT6 and FerlFirst7.
• OCWs: MIT OCW and OpenLearn.
• LMSs: SIDWeb
• IRs-Large: PubMed8, Research Papers in Economics9

and National Institute of Informatics10.
• IRs-University: Queensland11, MIT12 and Georgia

Tech13.

The collection of data for all the LORs, except INTUTE,
consisted in obtaining the date of publication of all their
objects. In the case of INTUTE, a sample with all the
objects containing the word “Science” (approximately
10% of the repository) was obtained. This restriction was
set to limit the number of objects to be analyzed due to
memory restrictions in the statistical software packages.
The data for LORPs and LORFs were collected through
Web scraping of the sites during the period between
the 5th and the 8th of November 2007. In the case of
OCWs and LMSs, the data of publication of all the
courses were obtained through direct download. Finally,
the selection criteria for the first three IRs (IRs-Large)
was size, time of existence and current activity. These
three factors were evaluated from the data provided by
ROAR. The second three (IRs-University) were selected
from University repositories of intermediate size with
at least 3 years of existence. The monthly size of these
repositories was obtained from data provided by ROAR.

The first variable analyzed was the average growth
rate (AGR), measured in objects inserted per day. This
value is obtained by dividing the number of objects in
the repository by the time difference between the first
and last publications. Results for this calculation can
be seen in the fourth column (AGR) of Table 2. It is
interesting to compare the AGR of different types of
repositories. LORPs, for example, grow with a rate of
1 or 2 objects per day. OCWs and LMSs grow similarly
with an unexpectedly high value of circa 1 course pub-
lished per day. From the previous analysis on course
size, that rate can be translated, on average, in 20 objects
per day. In LORFs and IRs the variability is significantly
higher. For example, big IRs grow more than 10 times
faster than University IRs. This difference can be ex-
plained by the fact that big IRs are open to a wider
base of contributors. On the other hand, the contributor
base of University IRs is often restricted to researchers
and students of that specific University. The difference
between LORFs, however, could not be attributed to size
of the contributor community, but to their dedication.
INTUTE is a project that pays expert catalogers to find
and index learning material on the web. Merlot and

5. INTUTE. http://www.intute.ac.uk
6. MERLOT. http://www.merlot.org
7. FerlFirst. http://ferl.becta.org.uk (decommissioned)
8. PubMed repository. http://www.ncbi.nlm.nih.gov/pubmed/
9. Research Papers in Economics repository. http://www.repec.org
10. National Institute of Informatics repository. http://www.nii.ac.jp
11. Repository of U. Queensland. http://espace.library.uq.edu.au/
12. Repository of MIT. http://dspace.mit.edu/
13. Repository of Georgia Tech. http://smartech.gatech.edu/dspace/
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TABLE 1
Summary of Number of Objects Analysis

Repository Sampled Average
Size

Distribution Parameters Conc. (20%)

LORp 24 3,905 Exponential l=2.5x10-3 70%
LORf 15 19,396 Exponential l=5.2x10-5 66%
OCW 34 193 Lotka a=1.61, xmin=8 90%
LMS 2,500 67 Lotka a=1.95, xmin=70 85%
IR 775 9,820 Lotka a=1.73, xmin=3304 90%

FerlFirst, however, rely on voluntary contributions from
external users. A group of paid workers are expected to
have a higher production rate than a group of volunteers
of a similar size.

The AGR describes linear growth. To test the actual
growth function six models were fitted against the data:
linear (at + b), bi-phase linear with breakpoint (a1t for
t < Breakpoint and a2t+b2 for t ≥ Breakpoint), bi-phase
linear with smooth transition (ln(a ∗ exp(bx) + c), expo-
nential (b∗eat), logarithmic (b∗ln(at)) and potential (b∗ta).
These models were selected based on visual inspection
of the size vs. time plot (Figure 2). We use General-
ized Linear Model fitting with Least-Squares Estimation.
The selection of the model was based on the Akaike
information criterion (AIC) [31], that not only takes into
account the estimation power of the model, but also its
simplicity (less estimated parameters). The result of the
fitting indicates that most data sets were best explained
by the linear bi-phase model (both the breakpoint and
smooth versions). In PubMed, Connexions and OCW the
growth is best explained by the potential function, but
bi-phase linear is the second best. A visual inspection of
the plots (Figure 2) shows indeed that, in most data sets,
two regimes of linear growth can be easily identified,
sometimes with a clear transition point (BP ). This result
suggests that growth is mainly linear, but the rate is
not constant. Two different growth rates are identified in
all the repositories. There is an initial growth rate (IGR)
that is maintained until a “Breakpoint” (BP) is reached
and then, a mature growth rate (MGR) starts. Table 2
reports the growth rates and breakpoint values for all
the studied repositories.

In most cases, the change between IGR and MGR is
positive, meaning that the rate increases with maturity.
The most logical explanation is that at some point in time
the repository reaches a critical mass of popularity and
the contributor base starts to grow faster, and therefore,
the total production rate increases. This hypothesis is
tested in the following subsection when the contributor
base growth is studied. However, in two LORs, the
production rate decreases from IGR to MGR (Ariadne
and FerlFirst). Having inside knowledge of Ariadne
history, the inflection point represents the moment when
the focus from the Ariadne community shifted from
evangelization to attract new members towards inter-
connection with other repositories through the GLOBE

consortium14, decreasing the number of active submis-
sions to the core repository. As such, Ariadne is moving
from primarily being a repository to primarily being
an integrator of repositories. For FerlFirst, on the other
hand, the decline is explained by the abandoning of the
project. At the time of writing, this repository has been
decommissioned and absorbed by another project, Ex-
cellence Gateway15. These two can be considered special
cases, where the norm is an increase at maturity.

Another interesting finding is that BP is, in most cases,
located between two to three years after the first object
has been inserted into the repository. In the case of LORs,
this can be seen as the time needed by the repository to
reach a critical mass of objects that could attract more
users or funding, and therefore, more objects. In the case
of LMSs, OCWs and University IRs, this can be the time
taken to “cross the chasm” [32] between early adopters
and mainstream use inside the institution.

It is important to note that the linear trend is observed
at large time scales. The short-term growth, specially
for OCWs, LMS and IR is characterized by irregular
”jumps”. These jumps can be explained by external
events such as the start of the academic semesters or the
deadline for annual reviews. If we smooth these jumps
over a long period of time, however, the linear growth
is apparent.

The main conclusion of this analysis is that linear
growth in the number of objects is a sign of the lack
of penetration of Learning Object technologies in educa-
tional settings. It would be expected that the amount of
learning material created follows an exponential growth
[33]. It seems that much of this material is not published
in any type of repository.

3.2 Contributor Base Growth
Another way to consider repository growth is to measure
its contributor base at different points in time. For this
analysis, we try to use the same set of data as in the pre-
vious experiment, with some exceptions. Intute, FerlFirst
(LORFs) and OpenLearn (OCW) were excluded because
they do not provide contributor data for their objects. To
obtain the data for the IRs, the complete metadata set
was harvested from the repositories. For this reason, the
three biggest IR (PubMed, RePEc and National Institute
of Informatics) were excluded. It was not feasible to

14. Globe Consortium. http://www.globe-info.org
15. QIA Excellence Gateway. http://excellence.qia.org.uk/
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TABLE 2
Results of the Growth Analysis of the Repositories

Repository Objects Age (y) AGR (o/d) IGR (o/d) MGR (o/d) BP (y)
LORP
Ariadne 4,875 12.0 1.1 2.9 0.66 1.0
Connexions 5,134 7.9 1.8 0.8 2.19 2.8
Maricopa 2,221 4.2 1.4 0.9 2.32 3.0
LORF
Intute 120,278 12.5 26.7 5.8 36 4.5
Merlot 18,110 10.8 4.6 0.9 5.8 2.8
Ferl First 3,938 6.3 1.7 5.0 1.1 1.0
OCW
MIT OCW 1,796 4.9 1.0 0.1 2.44 2.9
OpenLearn 499 1.8 0.7 0.1 4.12 1.5
LMS
SIDWeb 1,445 5.7 0.6 0.2 2.21 4.6
IR
PubMed 1,124,197 7.3 431 111 591 2.8
RePEc 514,636 4.9 306 65 90 3.3
NII 179,153 5.7 88 42 151 3.6
Queensland 12,069 5.3 6.4 2.4 14 2.7
MIT 27,416 3.8 17.5 32 11 1.6
Georgia Tech 23,163 3.7 20.3 7.4 25 1.4

Fig. 2. Empirical and Fitted Size Growth

process the large amount of information using a single
computer in a reasonable amount of time. Nonetheless,
the remaining repositories are representative of their
respective type.

The list of contributors was obtained by taken the
name of the authors of all the objects present in the
repository. A list of all the unique contributors was gen-
erated. In the case that one object have several authors,
only the first author is considered its contributor. For
example, if the learning object metadata mentions three
authors, the act of publication is only attributed to the
first author. Counting the first author instead of assigned
fractional counts to all the authors is a common practice
in Scientometrics [34].

As can be seen in the second column of Table 3,
the size of the current contributor base of the studied
repositories (with the exception of IRs) is within one
order of magnitude. The smaller contributor base is
ARIADNE (166) and the largest is Merlot (1,446). It
is important to note that the difference in numbers of
objects of LORP and LORF cannot be explained just by
the size of the contributor base. As it was hypothesized

in the previous section, the difference should originate
in a different rate of contribution. In the case of IRs, the
user base is considerably bigger than in other types of
repositories. The reason for this difference can be found
in the fact that contributing to Institutional Repository is
in most cases mandatory for post-graduate students [35].
Publishing their thesis in the Institutional Repository is
commonly a requirement. Contrarily, contribution to the
other type of repositories is optional and, in the case of
OCWs and LMSs, it is normally reserved for professors
only.

The analysis of the average growth rate (AGR), in
the third column of Table 3, presents an even more
coherent picture. The number of authors in LORs seem
to incorporate a new contributor each 2 to 5 days. In
MIT OCW, with its accelerated publishing program, a
new professor is added every day in average. SIDWeb,
have a rate similar to LORs with a new professor using
the system every 5 days, also on average. As expected
from the previous analysis, IRs have a much higher
AGR, counting between 4 and 10 new contributors each
day. Based on these numbers, it would be an interesting
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TABLE 3
Result of the Analysis of the Contributor Growth in the Repositories

Repository Contrib. AGR (c/d) Function Growth Rate BP (y)
LORP
Ariadne 166 0,04 Bi-Phase L. IGR=0.02, MGR=0.06 3.5
Connexions 581 0,22 Exponential ER=1.2 x 10-3 3.0
Maricopa 529 0,20 Bi-Phase L. IGR=0.06, MGR=0,28 2.4
LORF
Merlot 1,446 0.42 Bi-Phase L. IGR=0.12, MGR=0.54 1.1
OCW
MIT OCW 1,072 1.34 Exponential ER= 3.7 x 10-3 2.3
LMS
SIDWeb 584 0.21 Exponential ER=1.8 x 10-3 3.3
IR
Queensland 9,503 3.9 Bi-phase L. IGR=1.6, MGR=6.9 3.8
MIT 21,028 9.7 Bi-phase L. IGR=0.7, MGR=17 2.2
Georgia Tech 10,704 7.9 Bi-phase L. IGR=4.4, MGR=9.7 1.7

Fig. 3. Empirical and Fitted Contributor Base Growth

experiment to open LMSs and OCWs also to under- and
post-graduate student contributions.

The actual growth function was determined with the
same candidate functions and fitting procedure used
in the previous subsection. The results can be seen in
Table 3, fourth and fifth columns. While the majority
of repositories present a bi-linear growth, similar to the
growth in the number of objects, it was surprising to find
that, in the case of MIT OCW, SIDWeb and Connexions,
the contributor base grows exponentially. This effect can
be better visualized in Figure 3. Section 5 will present a
model that could explain how an exponentially growing
user base could generate a linear object growth.

The change from IGR to MGR is positive in all the
studied repositories. In most cases, the MGR is between
2 to 4 times larger than the IGR. A notable exception is
MIT IR. In that particular case, the rate increases more
than 10 times. In the case of exponential growth (Con-
nexions, MIT OCW and SIDWeb) the rate at which new
users enter the system is always increasing. That growth
is captured in the exponential rate parameter. This pa-
rameter is similar for the three repositories, with MIT
OCW also presenting the most rapid growth. However,
exponential growth cannot continue forever, especially
in the case of MIT OCW and SIDWeb. Once most of the
professors have created a course in those systems, the
contributor growth rate will follow the incorporation of

new faculty members, which is commonly linear over
large periods of time.

An interesting comparative analysis can be made be-
tween the breakpoints of the object and contributor base
growth. This analysis can shed light on the “chicken
or egg” dilemma regarding repositories. This dilemma
can be summarized as: does an increase in the number
of objects attract more users? or does the increase in
the number of contributors generate more objects? The
breakpoint, in the case of Bi-phase linear growth is the
point of transition between the two linear phases. In the
case of exponential growth, we selected the point where
the function grows faster than linear. Comparing the BP
values in Tables 2 and 3. The evidence is inconclusive.
Some repositories, such as Maricopa, MERLOT and MIT
OCW first have an increase in the rate at which new
contributors arrive and eight months later, on average,
an increase in rate of growth is perceived. However, in
the IRs, SIDWeb and Connexions, the contrary is true.
First, the rate object growth increases and four months to
one year afterward, the rate of new contributors follows.
It seems that to gain insight on how the ‘chicken or egg”
dilemma is solved in the repositories, a deeper analysis
is needed.

A final conclusion for this analysis brings hope for the
establishment of Learning Object Technologies. Spotting
exponential growth in the number of contributors in
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three repositories is maybe signaling that a transition
phase between linear and exponential growth is happen-
ing. However, this change will depend on the ability of
the repositories to retain the productive users. This will
be ultimately defined by the engagement and fidelity
that the repository could produce in their contributors.

4 CONTRIBUTION ANALYSIS

In this section, we analyze in more detail how con-
tributors publish objects in the repositories. The first
study will analyze how many objects are published
by each contributor. The second subsection analyzes
how frequently objects contributors publish objects. The
third and last subsection examines the amount of time
that each contributor keeps contributing objects. These
analyzes will help us to gain an insight on the inner
workings of the learning object publication process.

4.1 Contribution Distribution
To understand contributor behavior, full publication data
from three LORPs (Ariadne, Connexions and Maricopa),
one LORF (Merlot), one OCW site (MIT OCW), one LMS
(SIDWeb) and three IRs (Queensland, MIT and Georgia
Tech) was obtained. Each learning object was assigned
according to the data to one contributor. If more than
one contributor was listed, we counted the first author
only.

The first step in this analysis is to obtain the average
number of publications per contributor (AC). This value
was obtained dividing the total number of objects in
the repository (Table 2) by the number of contributors
(Table 3). Table 4 presents this value in the second
column. It is interesting to note that the average output
of contributors to different kind of repositories differ
substantially. The contributors to the ARIADNE repos-
itory, while few, have produced, during the lifetime of
the repository, more objects per capita than any of the
other LORs. The results for Merlot also confirm that the
bigger size of LORF is not due to a bigger, but to a more
productive contributor base. The results for MIT OCW
and SIDWeb show that they have a similar productivity
per contributor, hinting that the publishing mechanics in
LMSs and OCWs are very similar. For IRs, the only way
to explain the low productivity, in what it is a scientific
publication outlet, is to assume that the majority of the
content is made by student thesis.

The next step in the analysis is to obtain an approxima-
tion for the distribution of the number of publication for
each author. Given that the data is highly skewed to the
left, the best way to present it is the size-frequency graph
in logarithmic scales (Figure 4). This figure represents
how probable (y axis) is to find a contributor that have
published a certain amount of objects (x axis). Five sta-
tistical distributions were fitted against the data: Lotka,
Lotka with exponential cut-off, Exponential, Log-Normal
and Weibull. The parameter estimation was made with
the MLE method and the Vuong test was used to find

the best fitting of the competing distributions. The best-
fitting distribution and their estimated parameters can
be seen in the third and fourth columns of Table 4.

From the result of the distribution fitting, it is clear that
the number of objects published per each contributor
varies according to the type of repository. All LORs
follow a Lotka distribution with exponential cut-off. The
meaning of this cut-off is that it becomes increasingly
harder to publish a large amount of objects. The effect
can be seen in Figure 4 as a slight concavity at the tail of
the distribution. The parameters for the different LORs
are similar. Even the cut-off rate seems to agree. For
LORPs the cut-off starts sooner by an order of magnitude
than for LORF. The finding of this distributions means
that most LOR contributors only publish one object.
Even high producing individual start loosing interest
after publishing many objects. Maybe one of the reasons
behind this distribution is the lack of some type of
incentive mechanism [7].

OCW MIT and SIDWeb present a Weibull distribution.
The finding of this distribution means that for OCWs
and LMSs there is an increased probability to produce a
certain amount of objects. This can be seen as the strong
concavity in the curve compared with the flat Lotka.
The mechanism behind this distribution is that there is
an interest to produce courses with a given amount of
learning objects (maybe 1 object per session).

The tail of the IRs are fitted by the pure Lotka dis-
tribution. The head of the distribution, users that have
published 1 or 2 objects, have a disproportionately high
value that cannot be fit by any of the tried distributions.
The tails, however, have an α of around 2.50 that is
consistent with previous studies [36] [37] of the distribu-
tion of scientific publications among authors. This result
suggests that the publication of documents in IRs have
a different mechanism than the publication of learning
objects in LORs, and maybe what we are measuring in
the IRs tail is a by-product of the scientific publication
process.

Finally, the percentage of objects created by 20% of
the users is calculated. The results are presented in the
last column of Table 4 (C-20). From these results, it
can be concluded that the LORs are affected by the
Pareto inequality (20/80 rule). The concentration for
OCW MIT is less unequal, with just 50% of the objects
being published by the top 20% contributors. The ex-
planation for this result is that there is a considerable
proportion of users that produce between 10 and 50
objects. This group of contributors is productive enough
to balance the production of the tail. In the case of IRs,
an interesting effect, produced by the thesis publication
can be observed. The most productive section of the
contributors is located at the head of the distribution.
This effect is more visible in the Queensland repository.
There 20% of the most productive contributors publish
around also the 20% of the material. The only way to
reach this percentage is that almost all the contributors
publish the same amount of documents, more concretely
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for this repository, one document.
As can be concluded from the previous analysis, not

all contributors are equal. In any population, regardless
if it is Weibull or Lotka, there will always be several
“classes” of users, similarly to the segmentation use
to classify socioeconomic strata (As mentioned before,
income is also heavy-tailed distributed). We can divide
the contributing population in a large “lower class” of
contributors that only publish few objects. A smaller
“middle class” that publishes intermediate amount of
objects and a very small “higher class” that publishes
a large amount of objects. These classes arise naturally
and have to be dealt with. While the publishing capacity
can be increased with better tools and intuitive envi-
ronments, the inherent inequality will, most probably,
persist.

4.2 Lifetime and Publishing Rate

In this analysis, we consider the publication history
of each individual contributor. Two variables will be
measured: First, the lifetime of the contributor. This is
the time from its first to its last publication. Second,
the publishing rate. This is the average number of ob-
jects published during the lifetime of the contributor.
In real world terms, the lifetime can be considered as
the period during which the contributor is engaged
with the repository. The publishing rate, on the other
hand, can be considered as proxy measurement of the
talent or capacity that the contributor has to publish
learning objects. To compute these values we extract the
contributor information from the repositories used in the
previous analysis.

In the calculation of the lifetime, we always know
its beginning, but we are never sure about its end. A
contributor could have published its first object two
years ago and its last object one year ago. The measured
lifetime will be 1 year. However, if the contributor pub-
lished one more object just the day after the data was
captured, its actual lifetime will be 2 years. To cope with
this limitation, the lifetime of a user is only considered
finished if the time from the last object insertion is
at least as long as the longest period without activity
between two consecutive publications. If a lifetime is not
ended, it will be assigned the time interval from the first
object insertion until the date of data collection.

The measurement of the rate of production also
presents some difficulties. The rate of contribution could
not be measured if all the objects have been published
on the same day. Also, the publication of few objects
in a short lifetime will produce inflated rate values. To
alleviate this problem, only users whose lifetime is larger
than 60 days, and that have published at least 2 objects
are considered for the calculation. To prevent the bias
in the distribution produced by only considering highly
productive contributors, the contributors that have a
lifetime shorter than 60 days are assigned the smallest
production rate.

As expected, each contributor present a different life-
time. To obtain a clearer picture of how this values
compare between different repositories, we calculate the
Average Lifetime (ALT). Table 6 presents the results
measured in days. The first conclusions that can be
extracted from the lifetime values is that, in average, they
are much smaller than the lifetime of the repositories
(Table 2). This means that most contributors are “retired”
after a period of 1 year. This conclusion holds even if
the contributors “born” during the last year are removed
from the calculation. However, the actual values of ALT
are not related to the type of repository and do not
provide much information about the distribution of the
lifetime among contributors.

Fig. 5. Comparison between Lifetime Distribution be-
tween Repository Types.

Based on the skewed nature of the distribution of
lifetime, we fit the five heavy-tailed distributions used
previously. The results can be seen in Table 6. The
distribution is clearly related to the type of repository. A
comparison between the different lifetime distributions
across several repository types can be seen in Figure 5.

LORs contributors have lifetimes that are distributed
exponentially among the population. The λ parameter
of the exponential is also similar across LORs. This sim-
ilarity suggests that LORs contributors share the same
type of engagement with the repository. The probability
of cease publishing is proportional to the time that the
contributor have been active. The result is that there
are considerable amount of users with short lifetimes
(less than 3 months). We can classify this behavior as
engagement by novelty. As the novelty worn off, the user
ceases contributing.

In the case of OCWs and LMS, the lifetime follows
a Weibull distribution. Again, the shape and scale pa-
rameters are similar. A Weibull distribution with those
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TABLE 4
Analysis of Distribution of Contribution

Repository AC (o) Distribution Parameters C-20 (%)
LORP
Ariadne 29.4 Lotka exp. cut-off α = 1.57, λ = 0.011 75%
Connexions 8.84 Lotka exp. cut-off α = 1.35, λ = 0.0094 78%
Maricopa 4.20 Lotka exp. cut-off α = 2.12, λ = 0.0067 64%
LORF
Merlot 12.5 Lotka exp. cut-off α = 1.88, λ = 0.0006 82%
OCW
MIT OCW 39.7 Weibull k = 1.07, λ = 40.5 50%
LMS
SIDWeb 40.0 Weibull k = 0.52, λ = 17.14 72%
IR
Queensland 1.3 Lotka α = 3.01 , xmin = 2 22%
MIT 1.3 Lotka α = 2.55. xmin = 3 36%
Georgia Tech 2.1 Lotka α = 2.25, xmin = 5 68%

Fig. 4. Empirical and Fitted Distribution of Number of Publications between Contributors

TABLE 5
Result of the Analysis of Publishing Rate

Repository APR (o/d) Rate Distribution Rate Parameters
LORP
Ariadne 0.082 Log-Normal µlog = −3.25 , σlog = 1.27
Connexions 0.046 Log-Normal µlog = −4.11 , σlog = 1.36
Maricopa 0.010 Log-Normal µlog = −5.18 , σlog = 0.95
LORF
Merlot 0.37 Log-Normal µlog = −2.47 , σlog = 1.11
OCW
MIT OCW 0.32 Log-Normal µlog = −1.68 , σlog = 1.07
LMS
SIDWeb 0.12 Log-Normal µlog = −2.57 , σlog = 0.96
IR
Queensland 0.17 Log-Normal µlog = −4.05 , σlog = 2.07
MIT 0.24 Log-Normal µlog = −7.08 , σlog = 2.14
Georgia Tech 1.55 Log-Normal µlog = −1.84 , σlog = 2.53

parameters hints that the amount of contributors with
very short lifetimes (less than 1 month) do not dominate
the population. It is more common to find contribu-
tors that keep publishing after three months to one
year. However, Weibull decreases rapidly after its peak,
meaning that it is infrequent to find contributors with
several years of publication. We describe this behav-
ior as engagement by need. The average contributor
keeps publishing until a goal is reached (for example,
a course is completed and/or improved). After the goal
have been reached the probability of stopping increases

rapidly.

The IRs present a very different publishing behavior,
denoted by the Log-Normal distribution. The low σlog
parameter, found in all the IRs lifetimes, means that the
majority of the contributors have a very short lifetime
(few weeks), with a neglectable amount having lifetimes
measured in months or years. This result is consistent
with the finding that most contributors in the studied IRs
published just one object, probably their thesis. After this
publication, and, maybe, some immediate corrections or
additions, the contributors cease publishing. We describe
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TABLE 6
Result of the Analysis of Lifetime. ALT is measured in days

Repository ALT (d) LT Distribution LT Parameters
LORP
Ariadne 514 Exponential λ = 0.0010
Connexions 261 Exponential λ = 0.0012
Maricopa 304 Exponential λ = 0.0012
LORF
Merlot 328 Exponential λ = 0.0015
OCW
MIT OCW 67 Weibull k = 1.72 , λ = 325
LMS
SIDWeb 364 Weibull k = 1.21 , λ = 588
IR
Queensland 319 Log-Normal µlog = 6.01 , σlog = 0.89
MIT 120 Log-Normal µlog = 3.84 , σlog = 2.45
Georgia Tech 9.3 Log-Normal µlog = 3.61 , σlog = 2.16

this behavior as low engagement. The repository does
not require or promote continuous submissions from the
majority of users. As a response, most user lifetimes are
basically instantaneous compared with the lifetime of the
repository.

After analyzing the lifetime, we calculate the average
publication rate (APR) for each repository. The results
are presented in Table 6. The only clear conclusion that
can be extracted from the APR is that LORP contributors
publish less frequently than other types of repositories.
Specially if compared with the similar LORF, MERLOT,
the publication rate seems to be one order of magnitude
lower. As mentioned before, the main difference between
the size of LORPs and LORFs seems to radicate in a
difference in productivity of the contributor base. The
difference of APR between the other type of repositories
is not clear.

To gain better insight on how the publication rate
is distributed across the contributing population, the
five previously used statistical distributions are fitted
to the data. The results of the fitting are presented in
Table 6. Surprisingly, all the repositories shows the same
distribution, Log-Normal. The main difference seems to
be that the σlog parameter is around one for LORPs,
LORFs, OCWs and LMSs, and around 2 for IRs. A higher
σlog create a larger skewness to the left, meaning that a
larger proportion of contributors is low-productive. The
finding of the same distribution for all the repositories
is very significant, because it means that there is no
difference between the distribution of talent or capacity
among the different contributor communities.

This analysis shows that the main differentiator be-
tween different types of repositories is the type of en-
gagement that the contributors have. According to the
findings, the most successful models of repository seems
to be OCWs and LMSs, where most of the contributors
keep publishing for longer periods of time. This result
suggests again that an incentive-based publishing is the
most effective form to increase the total number of
learning objects available.

5 IMPLICATION OF THE FINDINGS

The results of the quantitative analysis can be used to
answer the questions raised in the introduction. This
section presents those answers and the implications
that they have in our understanding of the learning
object publication process and the technological design
of repositories.

What is the typical size of a repository? Is it related to its
type? In general, individual learning object repositories
seems to vary from hundreds to million of objects.
Their average size depends of the type of repository.
LORPs can be considered to have few thousand of
objects. LORFs are in the order of the tens of thousands.
However, those numbers are small compared with multi-
institutional IRs that can count hundreds of thousands
and even millions of objects. OCWs and LMSs can have
from hundreds to thousand of courses.

However, the answer to this question is not that sim-
ple. The size is not Normally distributed, meaning that
the average value cannot be used to gain understanding
of the whole population. It is not strange to find reposito-
ries several orders of magnitude bigger or smaller than
the average. Sampling biases aside, the distribution of
learning objects among repositories seems to follow a
Lotka or Power Law distribution with an exponent of
1.75. The main implication of this finding is that most
of the content is stored in few big repositories, with a
long, but not significant tail. Administrators of a big
repository would want to federate [30] their searches
with other big repositories in order to gain access to a big
proportion of the available content. On the other hand,
it makes more sense for small repositories to publish
their metadata [26] for a big repository to harvest it
in exchange for the access to their federated search. It
seems, through an initial reading of this finding, that
a two (or three) tiered approach mixing federation and
metadata harvesting is the most efficient way to make
most of the content available to the wider audience
possible using the current infrastructure.

How repositories grow over time? Linearly. This is a
discouraging finding. Even popular and currently ac-
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tive repositories grow linearly. Even if we add them
all together, we will still have a faster linear, but no
exponential. The main reason for this behavior is the
contributor desertion. Even if the repository is able to
attract contributors exponentially, it is not able to retain
them long enough to feel the effect. The value equation,
how the contributor benefits from contributing to the
repository, is still an unsolved issue in most repositories.
Several researches have suggested incentive mechanism
[11] [40] comparable to scientific publication, in order to
provide the professor with some type of reward for their
contribution.

Another interesting result in the growth analysis was
to find that all repositories went through an initializa-
tion with usually a very low growth rate. The length
of this stage varied from 1 to 3 years (shortening for
more recent repositories). After this period, a more rapid
expansion begins caused by (or that cause) an increase
in the number of contributors joining the repository.
Having knowledge of these phases could help repository
administrators to not discard slow growing repositories
too soon.

What is the typical number of contributors a repository has?
Is it related to its type? We can estimate, from the analysis
in section 3, that medium LORs have a base of 500 to
1500 contributors. This number is similar also for OCWs
and LMSs contributor bases. On the other hand, IRs, be-
ing targeted also to students, have contributor bases one
order of magnitude bigger. The size of the contributor
base, however, is not always related to the size of the
repository. Merlot contributors, being outnumbered 1 to
10, produce a comparable amount of objects as MIT IR
contributors. Moreover, the title to the most productive
contributors in the study goes to the OCWs and LMSs
professors (Table 4) with around 40 objects in average.
This results also support the idea that LMSs are the most
effective type of repository, given that they provide a
clear value into the publishing step (students not asking
for copies of the material, for example).

Given the relatively small size of the communities that
build repositories, it would be an interesting experiment
to measure the impact that the introduction of social
networks could have in the sharing of material. For
example, users would be interested in knowing when a
colleague in his same field has published new learning
objects [41]. This social networks can be created explicitly
(a lá Facebook) or implicitly (relationship mining) [42].
The deployment of these types of networks could also
help to solve the lack of engagement problem.

How the number of contributors grows over time? Most of
them linearly, but surprisingly three of them Connexions,
MIT OCW and SIDWeb, exponentially. This unexpected
result, specially in SIDWeb, a run-of-the-mill LMS, is
very encouraging for the future of the Learning Object
Economy, because it can give rise, with the right en-
vironment, to exponential growth of content available.
However, we also found that at this stage, the growth in
those repositories continue linear. However, this obser-

vation can be due to the recent kick-off of exponential
contributor base growth in those repositories. A follow-
up study in a year period would help us to have a better
perspective. Again, the finding of exponential growth
in course-based repositories confirms the idea that we
should strive to connect LMS as the main source of
learning material.

How many learning objects a contributor publishes in
average? As mentioned before, the average productivity
of users depends on the type of repository. For LORP it
can be around 10 objects per contributors. IRs present
the lowest production per contributor with 1 or 2 in
average. However, heavy tail distributions, Lotka and
Weibull, makes this answer a little more complicated.
The problem with the average values given previously
in the current situation, is that in heavy tailed distri-
butions “there is not such thing as an average user”.
As mentioned in section 4, the best way to describe
the production of different contributors is to cluster
them in “classes” similar to socioeconomic strata. If we
adopt this approach we gain a new way to look at our
results. In LORP and LORF, the repository is dominated
by the high-class. Most of the material is created by a
few hyper-productive contributors. the 10% of the users
could easily have produced more than half of the content
of the repository. In the case of OCWs and LMS, the
Weibull distribution determines that the middle-class is
the real motor of the repository. The low- and high-
class are comparatively small. Finally, University IRs,
with Lotka with high alpha are dominated by the lower-
class as more than 98% of the population produces
just one object. From our analysis on publishing rate
and lifetime, we can conclude that these different dis-
tributions are caused not by an inherent difference in
the talent or capacity among the different communities,
but by the difference in contributor engagement with
the repository. It seems that the distribution of lifetime,
the time that the contributor remains active, is different
for this three observed repository types. In LORP and
LORF, there is some time of novelty engagement that
keep the contributor active at the beginning, but the
chances of ceasing publication increases as more time
is spent in the repository. For OCWs and LMSs, there is
a goal-oriented engagement that keeps the contributor
productive until her task is finished (course is fully
published). In the case of IRs, there is no engagement at
all. The norm is just discrete contributions. Changes on
the type of engagement should have an effect not only
in the distribution of publications among users, but also
in the growth and size of the repository.

In conclusion, it is very important for a repository ad-
ministrator to know the composition and characteristics
of her contributor base. Having a clear view of what
and who need to be incentivized is the first step before
building any type of incentive plan [43].

It is also interesting to note that these distributions are
not exclusive for the publication of learning objects, but
are shared by various types of user generated content
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(UGC) [44] . Moreover, there is a long research history
of how the Lotka law fit the process of scientific pub-
lishing [37]. The quantitive study of Learning Objects
(or Learnometrics as we call it) can borrow substantial
amount of research results from other Informetrics fields.
Moreover, Informetrics could also benefit from having
new sources of data in an specific domain to test the
generality of their conclusions.

Despite the previous answers, this analysis raises more
questions than it solves. We invite the reader to check the
Further Research section at the end of this disertation to
share what we consider to be the most interesting new
paths opened by this work.

6 CONCLUSIONS

The present paper is the first quantitative analysis per-
formed to the publication of learning objects. We have
raised and answered several basic questions important
for the understanding of the publication process and the
design and operation of learning object repositories of
several types.

Maybe the most relevant conclusion from the quantita-
tive analysis is that the publication process is dominated
by heavy-tailed distributions and the usual Gaussian-
based statistics are not enough to gain insight on the
nature of the compiled data. These distributions also
provide the repositories with several characteristics not
found in more normal sets. For example, difference in
size or productive can span through several order of
magnitude. Depending on the parameters of the dis-
tributions, it will not be unexpected that most of the
content of a repository is produced but few individuals
or that 99% contributor base only publish one object.
The black-swan effects [45] can be seen, measured and
modeled in the composition of all repositories.

Finally, measuring the publication process enable us to
take better decisions about the architecture and infras-
tructure needed to support the Learning Object Econ-
omy. Moreover, measuring is our only way to test the
unproven assumptions over which some of the current
Learning Object technology rests.

To complement this study about the supply of learning
objects, the next paper will analyze the other side of the
economy: the demand. Having a clear view of how these
two process work could help Market-Makers and Policy-
Makers to understand how different technologies and
policies affect the Learning Object Economy.

7 FURTHER RESEARCH

The quantitive analysis of the production of learning
objects have received little research attention, although
it is the base of Learning Object Economy. This paper
answered some basic questions, but much more are left
open. Moreover, embedded in the provided answers
there are the seeds of new questions:
• Effect of openness. An interesting question is

whether repositories with open publication, such as

Connexions or Merlot, are more efficient or produc-
tive that closed projects, such as Intute or MIT OCW,
in the long run.

• Publication patterns. While the easy metrics of life-
time and rate of contribution give an idea of the
publication process a deeper analysis of the patterns
in which publications take place would add more
information to understand this process.

• How to integrate LMS. One of the interesting find-
ings of this paper is that LMSs seems to be the
best environment for learning object publication.
However, traditionally those are isolated silos of in-
formation. How to intercommunicate between them
and share their contents, not only at the technical
level, but also, and more importantly, at the social,
legal and administrative level should be one of the
main challenges of our field.

Finally, we make a call for more quantitive analysis
for Learning Objects. There are other important aspects
in the lifecycle of the learning objects that we know little
about: creation, reuse, versioning, etc. The fact that the
data for this kind of studies is hard to get does not make
the questions that those measurements could solve less
important or urgent. Measuring will let us know where
we are and whether we, indeed, are moving forward.
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